Mark schemes

Q1.

(a)

Alternative form

M1 Phe structure drawn with correct peptide link

M2 amide group shown on end

M1 if Phe drawn with COOH or CONH₂
M2 ALLOW if no Phe drawn i.e. if NH₂ only attached directly to C=O on diagram

Scores M2 for ending in amide group

Scores **M1** for Phe group **M1** H needed on N of peptide link drawn unless C-CH-CH₂ drawn skeletal

(b)

ALLOW zwitterion
ALLOW -NH2+ and/or COOALLOW with C shown in COOH group
ALLOW without H on N
ALLOW N-H
NOT N-

2

(c) **M1** (aqueous) HCl/hydrochloric acid Name or formula of any strong acid or alkali

M2 reflux/heat

ALLOW warm / hot / high temperature for heat NOT T>200°C
IGNORE conc as condition with acid/alkali
IGNORE pressure

Alternative

M1 protease/(poly)peptidase/peptase/named protease

IGNORE enzyme

M2 warm

NOT hot / high temperature / T>50°C

2

3

(d) M1 lid/cover (on beaker)

Then any 2 from these 3

- prevents escape of vapour (from beaker) / evaporation of solvent (from beaker)
- so atmosphere in beaker is saturated with solvent vapour owtte
- to reduce evaporation from the plate

ALLOW (for bullet point 3) so solvent can rise up plate

ALLOW (for bullet point 3) to avoid plate drying out

(e) Difference in the balance between solubility in solvent/mobile phase and attraction to/retention on stationary phase

ALLOW difference between (relative) affinity/attraction for solvent and stationary phase **ALLOW** absorption/adsorption for retention on stationary phase

(f) M1 ninhydrin

M2 amino acids are colourless / to make the amino acids visible

ALLOW iodine

IGNORE UV

IGNORE stated final colour e.g. "turns the amino acids purple" is not enough on its own

IGNORE clear

(g) 0.54

ALLOW 0.53 - 0.55 (to min two sig figs)

[12]

2

Q2.

(a) Primary

1

(b)

OR

M1 for correct peptide link (Allow -CONH- as a minimum)

M1

M2 for the correct amino acid R groups Dipeptide can only score M1

M2

Trailing bonds not needed

(c) Water

Allow H₂O

1

(d) Two Cys R groups form a <u>disulfide</u> bridge/link stated or described

Could score via a correct diagram showing min

-SS-

M1

Ser and Asp R groups form <u>Hydrogen bonds</u>

Allow H bonds

M2

Disulfide bridges are stronger than H bonds

Interactions between cys R groups are stronger

М3

Because disulfide bridges are covalent bonds (while H bonds aren't)

Because covalent bonds are stronger (than H bonds)

M4

(e) Ionic bond

1